If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-12b-22=0
a = 1; b = -12; c = -22;
Δ = b2-4ac
Δ = -122-4·1·(-22)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{58}}{2*1}=\frac{12-2\sqrt{58}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{58}}{2*1}=\frac{12+2\sqrt{58}}{2} $
| 3r-7=3r-8 | | 32/x+4=7/5 | | 220x^2-100x+33=0 | | N2+3n-84=0 | | 5x+27=27 | | 8x=9x^2-8 | | 7x^2=-14+2x | | 2x^2-3x+169=0 | | 28x-15=13x+14 | | 72(y-89)=y-81 | | n^2-22n-48=0 | | 63•n=54 | | 25x-40=15x-47 | | t^2-13t-48=0 | | 1366=16t^2 | | 3b=36b= | | d^2-22d+72=0 | | 85.375=t^2 | | (x-4)÷6=-3 | | u^2-6u-72=0 | | 25x-9x/15=16x/15 | | 18x-7=15x+9 | | 0=40-(1.1×d) | | 1.8=1.2m | | q^2+38q+72=0 | | 0.5(4x+8)-2=0.25(8x+8) | | 3t2-22t+32=0 | | 7x-6x=1 | | 9=-7x-12 | | 9s-s=536 | | (x+40)(x+60)=0 | | f/8=3.4 |